DeepSeek Coder Installation
Deepseek coder 모델 설치를 위해 Ollama 설치를 진행해야 한다. Ollama는 Open Source Model을 Local 환경에서 구동할 수 있도록 해준다. 설치할 환경은 아래와 같다.
Ollama 공식 사이트에 나온 것처럼 간단하게 설치를 진행할 수 있다.

1
curl -fsSL https://ollama.com/install.sh | sh
1
2
3
4
5
6
7
8
9
10
11
12
13
root@hyeongjun:/# curl -fsSL https://ollama.com/install.sh | sh
>>> Installing ollama to /usr/local
>>> Downloading Linux amd64 bundle
######################################################################## 100.0%
>>> Creating ollama user...
>>> Adding ollama user to render group...
>>> Adding ollama user to video group...
>>> Adding current user to ollama group...
>>> Creating ollama systemd service...
WARNING: systemd is not running
>>> NVIDIA GPU installed.
>>> The Ollama API is now available at 127.0.0.1:11434.
>>> Install complete. Run "ollama" from the command line
설치는 위와 같이 진행된다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
root@hyeongjun:/# ollama
Usage:
ollama [flags]
ollama [command]
Available Commands:
serve Start ollama
create Create a model from a Modelfile
show Show information for a model
run Run a model
stop Stop a running model
pull Pull a model from a registry
push Push a model to a registry
list List models
ps List running models
cp Copy a model
rm Remove a model
help Help about any command
Flags:
-h, --help help for ollama
-v, --version Show version information
Use "ollama [command] --help" for more information about a command.
위와 같은 화면이 출력되었으면, 정상적으로 설치된 것이다.
Ollama를 설치한 이후 원하는 모델을 다운로드 받아 사용할 수 있다. 나는 DeepSeek Coder V2와 V1을 사용할 것이기에 해당 모델을 다운해주었다. 더 많은 모델은 (https://ollama.com/)에 접속해 찾아볼 수 있다.
1
2
3
4
5
ollama run deepseek-coder-v2:16b
ollama run deepseek-coder-v2:236b
ollama pull deepseek-coder-v2:16b
ollama pull deepseek-coder-v2:236b
위 코드 실행 시에 Error Could not connect to Ollama app. 오류가 발생하면 새로운 터미널에 아래 코드를 실행 시키고, 다시 진행하면 된다.
1
ollama serve
1
2
3
4
5
6
7
8
9
10
11
root@hyeongjun:/data/fault_localization/python# ollama run deepseek-coder-v2:16b
pulling manifest
pulling 5ff0abeeac1d... 100% ▕███████████████████████████████████████████████████████████ ▏ 8.9 GB/8.9 GB 114 MB/s 0s
pulling 22091531faf0... 100% ▕████████████████████████████████████████████████████████████▏ 705 B
pulling 4bb71764481f... 100% ▕████████████████████████████████████████████████████████████▏ 13 KB
pulling 1c8f573e830c... 100% ▕████████████████████████████████████████████████████████████▏ 1.1 KB
pulling 19f2fb9e8bc6... 100% ▕████████████████████████████████████████████████████████████▏ 32 B
pulling 34488e453cfe... 100% ▕████████████████████████████████████████████████████████████▏ 568 B
verifying sha256 digest
writing manifest
success
설치는 위와 같이 진행되고, 예시 sample을 넣어보면 아래와 같이 제대로 작성해주는 것을 확인할 수 있다.
Prompt: Generate python code that save double dictionary data into jsonl file
Sure! Below is an example of how you can save a nested (double) dictionary in Python to a JSONL (JSON Lines) file. A JSONL file contains one JSON object per line, which makes it useful for handling large datasets efficiently.
Here’s the code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import json
# Example double dictionary data
data = {
"user1": {
"name": "Alice",
"age": 30,
"address": {
"street": "123 Elm St",
"city": "Wonderland"
}
},
"user2": {
"name": "Bob",
"age": 25,
"address": {
"street": "456 Maple Ave",
"city": "Metropolis"
}
}
}
# Function to save nested dictionary to a JSONL file
def save_nested_dict_to_jsonl(data, filename):
with open(filename, 'w') as f:
for key, value in data.items():
json_line = json.dumps(value)
f.write(json_line + '\n')
# Specify the output JSONL file name
output_file = 'nested_dict.jsonl'
# Save the nested dictionary to a JSONL file
save_nested_dict_to_jsonl(data, output_file)
Explanation:
- Data Structure: The
datavariable is a nested dictionary where each key corresponds to another dictionary representing a user and their details including an address. - Function Definition: The
save_nested_dict_to_jsonlfunction takes the data (a nested dictionary) and a filename as arguments. It iterates over the keys and values of the outer dictionary, converting each inner dictionary to a JSON string usingjson.dumps. Each JSON string is written to the file on a new line. - Output File: The output file is specified by
output_filewhich is set to ‘nested_dict.jsonl’. - Calling the Function: The function is called with the data and the filename as arguments.
This code will create a JSONL file where each line represents a user’s details in the nested dictionary format. You
can then read these files back into Python using libraries like json or specialized tools for handling JSON Lines.
